Abstract

Using the new low-frequency and high-frequency radio images of this galaxy, we determined the shape of the spectrum along its lobes and performed the classical spectral-ageing analysis. On the other hand, we applied the analytical model of the jet's dynamics, which allowed us to derive the physical conditions for the source's evolution during the original jet propagation through the unperturbed IGM, as well as those when the restarted new jet propagates inside the outer cocoon formed by the old jet material that passed through the jet terminal shock. The dynamical age estimate of the outer and the inner lobes is 132+/-28 Myr and ~9+/-4 Myr, respectively. The synchrotron age in the outer lobes systematically rises from ~25 Myr in the vicinity of the lobes' edges to about 65-75 Myr in the centre of the old cocoon. These ages imply an average expansion speed along the jets' axis: (0.012+/-0.003)c in the outer lobes and (0.058+/-0.025)c in the inner lobes, but the latter speed would be ~0.25c when they were of age less than 1 Myr. We find that the jet power during the restarted activity is about ten-fold fainter than that of the original jet. Similar disproportion is found for the internal pressures and the magnetic field strengths in the old cocoon and those in the inner lobes. This disproportion can be effectively reduced by assuming the same equations of state for the emitting particles and the magnetic fields within the old and the new lobes. However, we think that our assumption of the non-relativistic equation of state for the old cocoon and the relativistic one for the new lobes is more justified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.