Abstract
AbstractIn this paper, we propose a controllable embedding method for high‐ and low‐dimensional geometry processing through sparse matrix eigenanalysis. Our approach is equally suitable to perform non‐linear dimensionality reduction on big data, or to offer non‐linear shape editing of 3D meshes and pointsets. At the core of our approach is the construction of a multi‐Laplacian quadratic form that is assembled from local operators whose kernels only contain locally‐affine functions. Minimizing this quadratic form provides an embedding that best preserves all relative coordinates of points within their local neighborhoods. We demonstrate the improvements that our approach brings over existing nonlinear dimensionality reduction methods on a number of datasets, and formulate the first eigen‐based as‐rigid‐as‐possible shape deformation technique by applying our affine‐kernel embedding approach to 3D data augmented with user‐imposed constraints on select vertices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.