Abstract

We present an automatic mesh segmentation framework that achieves 3D segmentation in two stages, hierarchical spectral analysis and isoline-based boundary detection. During the hierarchical spectral analysis stage, a novel segmentation field is defined to capture a concavity-aware decomposition of eigenvectors from a concavity-aware Laplacian. Specifically, a sufficient number of eigenvectors is first adaptively selected and simultaneously partitioned into sub-eigenvectors through spectral clustering. Next, on the sub-eigenvectors level, we evaluate the confidence of identifying a spectral-sensitive mesh boundary for each sub-eigenvector by two joint measures, namely, inner variations and part oscillations. The selection and combination of sub-eigenvectors are thereby formulated as an optimization problem to generate a single segmentation field. In the isoline-based boundary detection stage, the segmentation boundaries are recognized by a divide-merge algorithm and a cut score, which respectively filters and measures desirable isolines from the concise single segmentation field. Experimental results on the Princeton Segmentation Benchmark and a number of other complex meshes demonstrate the effectiveness of the proposed method, which is comparable to recent state-of-the-art algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call