Abstract

We investigate the lasing spectra, threshold gain values, and emission directionalities for a two-dimensional microcavity laser with a “kite” contour. The cavity modes are considered accurately using the linear electromagnetic formalism of the lasing eigenvalue problem with exact boundary and radiation conditions. We develop a numerical algorithm based on the Muller boundary integral equations discretized using the Nystrom technique, which has theoretically justified and fast convergence. The influence of the deviation from the circular shape on the modal characteristics is studied numerically for the modes polarized in the cavity plane, demonstrating opportunities of directionality improvement together with preservation of a low threshold. These advantageous features are shown for the perturbed whispering-gallery modes of high-enough azimuth orders. Other modes can display improved directivities while suffering from drastically higher threshold levels. Experiments based on planar organic microcavity lasers confirm the coexistence of Fabry–Perot-like and whispering-gallery-like modes in kite-shaped cavities and show good agreement with the predicted far-field angular diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.