Abstract
The energy distributions of secondary electrons produced by energetic carbon ions (in the energy range used, e.g., in hadron therapy), incident on liquid water, are discussed. For low-energy ions, a parametrization of the singly differential ionization cross sections is introduced, based on tuning the position of the Bragg peak. The resulting parametrization allows a fast calculation of the energy spectra of secondary electrons at different depths along the ion's trajectory, especially near the Bragg peak. At the same time, this parametrization provides penetration depths for a broad range of initial-ion energies within the therapeutically accepted error. For high-energy ions, the energy distribution is obtained with a use of the dielectric-response function approach. Different models are compared and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.