Abstract
Spray formation using the droplet impact on superhydrophobic mesh surfaces is particularly important because of its application in different industries. The present study revealed that adding a trivial amount of the poly(ethylene oxide) (PEO) polymer to a water droplet can considerably change the impact phenomena on the superhydrophobic mesh surfaces and suppress the spray formation. Droplet rebound is observed only in a narrow range of impact velocities of PEO aqueous droplets when the tiny filaments still connect the surface and droplet. Rebound suppression and deposition of the PEO aqueous droplet is attributed to the higher interaction between the polymer chains and the superhydrophobic mesh surface. After a critical impact velocity and We number which is independent of the PEO concentration, the liquid penetrates the mesh pores. The penetrated liquid formed the ligaments that grow until they reach the maximum length and surprisingly retract back to the mesh surface and the mother droplet. The ligaments destabilized at low PEO concentrations (c = 0.5 and 1 g/L) and a mesh opening size of H = 357 μm to the crest swell droplets when the droplet size is reduced by increasing the impact velocity. The ligament fragmentation and droplet detachment are observed only at high impact velocities when c = 0.5 and 1 g/L and H = 357 μm. The result shows that the PEO additive does not significantly affect the maximum spreading diameter. An empirical model to calculate the maximum spreading factor is developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.