Abstract

Improving low-count SPECT can shorten scans and support pre-therapy theranostic imaging for dosimetry-based treatment planning, especially with radionuclides like 177Lu known for low photon yields. Conventional methods often underperform in low-count settings, highlighting the need for trained regularization in model-based image reconstruction. This paper introduces a trained regularizer for SPECT reconstruction that leverages segmentation based on CT imaging. The regularizer incorporates CT-side information via a segmentation mask from a pre-trained network (nnUNet). In this proof-of-concept study, we used patient studies with 177Lu DOTATATE to train and tested with phantom and patient datasets, simulating pre-therapy imaging conditions. Our results show that the proposed method outperforms both standard unregularized EM algorithms and conventional regularization with CT-side information. Specifically, our method achieved marked improvements in activity quantification, noise reduction, and root mean square error. The enhanced low-count SPECT approach has promising implications for theranostic imaging, post-therapy imaging, whole body SPECT, and reducing SPECT acquisition times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call