Abstract

The speckle tomography technique is used for reconstructing both large-scale structures in turbulent flows and the microstructure of turbulence. The technique is based on multi-projectional line-of-sight speckle photography measurements with a subsequent computer-assisted tomographic reconstruction of the interior structure of the flowfield. The large-scale structure is reconstructed using the Radon integral equation, and the microstructure is analysed using a statistical approach and a novel Erbeck–Merzkirch integral transform. Digital speckle photography and speckle tomography methods are described. Numerical simulation of the optical technique is performed using digital ray tracing through a turbulent flowfield. The methods are illustrated by the 3D "averaged" temperature fields in turbulent convective flows obtained earlier and by the recent reconstruction of 3D correlation functions of density variations in turbulent flows. Local values of turbulence (Kolmogorov) microscale are evaluated using these correlation functions and the Erbeck–Merzkirch integral transform The precision of the reconstruction and the spatial resolution achieved are analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.