Abstract

Pattern projection profilometry is a powerful tool to reconstruct three-dimensional (3D) surface of diffuse objects. A variety of pattern projection methods for 3D capture of objects is based on the generation of sinusoidal fringes. A sinusoidal phase grating under divergent coherent illumination with a point source produces high visibility and high spectral purity sinusoidal fringes in a large longitudinal region. In the present work we study the speckle suppression in the fringes by using a polychromatic light source. Such an approach makes use of the fact that the lateral fringe spacing does not depend on the wavelength of the illuminating light. The wavelength has an impact on the locations and the number of the Talbot planes, where self-imaging of the grating occurs, and on variation of the contrast and the frequency content of fringes along the distance from the grating. We analyze the multi-wavelength illumination of the grating by solving the Fresnel diffraction integral for a point source illumination in paraxial approximation. We verified the obtained results by experiments with a thin holographic grating recorded on a silver-halide holographic plate under illumination with a laser diode operating in single mode and multimode regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.