Abstract

Medical Ultrasonography is a valuable imaging technology for medical diagnostics and to guide interventional procedures. Ultrasound imaging is particularly useful in breast cancer detection and diagnosis for women with dense breast tissue where traditional mammography may fail to detect suspicious areas. However, ultrasound imaging suffers from speckle noise, an inherent characteristic of all coherent imaging techniques due to the presence of sub-resolution scatterers. Speckle noise produces a reduction in contrast resolution which is responsible for the overall lower effective resolution of ultrasound compared to x-ray or MRI imaging. In the case of breast imaging, ultrasound speckle can mask small details such as low contrast tumors or micro-calcifications, which may be an early indication of breast cancer. This limitation prevents ultrasound from displacing mammography as the gold standard for breast cancer screening. In conventional pulsed ultrasound imaging systems, de-noising techniques are used to minimize the effect of speckle noise. However, research shows that there is a tradeoff between the effectiveness of speckle reduction techniques and image resolution. We introduce stepped-frequency continuous wave ultrasound imaging which provides a framework where speckle reduction techniques are particularly effective, resulting in higher quality images with an improved SNR and significantly lower speckle noise while maintaining the spatial resolution of the original scan so that small lesions of interest are visible to the radiologist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.