Abstract

Experimental patterns obtained using the small-angle light scattering technique for thin-film polymer studies are fraught with speckles arising from the effect of interspherulitic interference. The presence of speckles hampers efforts in characterizing the spherulitic structure. Using a divergent beam increases the number of scattering sites and results in a reduction of the degree of speckling. Nevertheless, this decimates the ability of analyzing the pattern at low-scattering angles. Employing an expanded collimated beam produces the same effect but necessitates the use of specially designed optical components. This article outlines a novel technique that involves simple vibration of the polymer sample. Experimental results confirm its efficacy in reducing speckles without limiting the ability for analysis at low-scattering angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.