Abstract

Digital holography is a promising imaging technology. However, there is speckle noise in the reconstructed image of a digital hologram. Speckle degrades the quality of the reconstructed image. Suppression of speckle noise is a challenging problem in digital holography. A novel method is proposed to reduce speckle by a fast logistic adaptive non-local means (LA-NLM) algorithm. In the proposed method, the logistic function is incorporated into the weight calculation of the NLM algorithm to account for multiplicative speckle noise. Filtering parameters are dynamically adjusted according to the statistical property of speckle in the reconstructed image. To enhance computational efficiency, the proposed algorithm takes advantage of the integral image technique to speed up the calculation of the similarity between image patches. Simulated and experimental digital holograms are obtained to verify the proposed method. The results show that the speckle noise is effectively suppressed in digital holography. The proposed method is efficient and feasible, and can be applied to such fields as three-dimensional display, holographic measurement, and medical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call