Abstract

Optical coherence tomography (OCT) has been an important and powerful tool for biological research and clinical applications. However, speckle noise significantly degrades the image quality of OCT and has a negative impact on the clinical diagnosis accuracy. In this paper, we propose a novel speckle noise suppression technique which changes the spatial distribution of sample beam using a special optical chopper. Then a series of OCT images with uncorrelated speckle patterns could be captured and compounded to improve the image quality without degradation of resolution. Typical signal-to-noise ratio improvement of ∼6.4 dB is experimentally achieved in tissue phantom imaging with average number n = 100. Furthermore, compared with conventional OCT, the proposed technique is demonstrated to view finer and clearer biological structures in human skin in vivo, such as sweat glands and blood vessels. The advantages of low cost, simple structure and compact integration will benefit the future design of handheld or endoscopic probe for biomedical imaging in research and clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.