Abstract

In this manuscript we present a novel super resolving approach based upon projection of a random speckle pattern onto samples observed through a microscope. The projection of the speckle pattern is created by coherent illumination of the inspected pattern through a diffuser. Due to local interference of the coherent wave front with itself, a random speckle pattern is superimposed on the sample. This speckle pattern can be scanned over the object. A super-resolved image can be extracted from a temporal sequence of images by appropriate digital processing of the image stream. The resulting resolution is significantly higher than the diffraction limitation of the microscope objective. The new super-resolution method is demonstrated by application to fluorescence of biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.