Abstract
The features of fluorescence emission in a dye-doped dense multiple scattered medium under pulsed laser pumping are considered in terms of confined excitation in small zones associated with laser speckles occurring in a pumped medium. The results of numerical modeling of the fluorescence emission kinetics are compared to the experimental data obtained using the rhodamine 6G-doped layers of the densely packed TiO2 (anatase) particles pumped at 532 nm by 10 ns laser pulses. The intensity of pump radiation during the action of laser pulses was varied from 1·105 W/cm2 to 5·107 W/cm2. In the recovery of the ratios of stimulated to a spontaneous emission, the spectra of the stimulated component were fitted using the spectral function derived by R. Dicke. In the framework of the considered concept, saturation of the ratio of the stimulated to a spontaneous emission and linear growth of an integrated fluorescence output with a practically unchangeable half-width of the emission spectra at high pump intensities are interpreted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.