Abstract

AbstractThe memristors are expected to be fundamental devices for neuromorphic systems and switching applications. The device made of a sandwiched layer of poly(N‐ vinylcarbazole) and reduced graphene composite between asymmetric electrodes (ITO/PVK:rGO/Al) exhibits bistable resistive switching behavior. The performance of the memristor can be optimized by controlling the doped graphene oxide. To assess the device performance when it switches between ON and OFF states, optical characterization approaches are highly promising due to their non‐destructive and remote nature. Here, speckle pattern (SP) analysis to this end is introduced. SPs include a huge amount of information about their generating mechanism, which is extracted through statistical elaboration. SPs of the PVK:rGO in different states in situ and examine the conduction mechanism is acquired. The variations in the statistical parameters are attributed to the resistance state of the PVK:rGO with regard to the physical switching mechanism. The resistance/conduction state, in turn, depends on the activity and properties of PVK:rGO memristors, as well as the additional non‐uniformities induced through the variations of density of carriers. The present optical methodology can be potentially served as a bench‐top device for characterization purposes of similar devices during their operating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.