Abstract

Speckle patterns in ultrasound images may move in a way which bears no simple relationship to the motion of the corresponding tissues. In some instances the motion replicates the underlying tissue motion, in others it does not. The authors name speckle motion the difference between the and the underlying tissue motion. An echographic image formation model is used to study the motion artifact produced by a rotating phantom and observed by a linear scan imaging system with a Gaussian beam. The authors propose that when the tissue is modeled as a random array of small and numerous scatterers, such motion aberration be accounted for by the 2D phase characteristics of the imaging system. An analytic prediction of this motion artifact in relation to the imaging system characteristics (beam width, transducer frequency, pulse duration) is presented. It is shown that the artifact results from the curvature of the system point spread function, which in turn determines the curvature of the 2D phase characteristics. To the authors' knowledge, it is the first time a comprehensive model of ultrasonic motion artifact is presented. The model has been developed to study rotation-induced artifact; the method is however quite general and can be extended to study the effects of other tissue motion, in particular deformation and shear. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.