Abstract

Optical sectioning endoscopy such as confocal endoscopy offers capabilities to obtain three-dimensional (3D) information from various biological samples by discriminating between the desired in-focus signals and out-of-focus background. However, in general confocal images are formed through point-by-point scanning and the scanning time is proportional to the 3D space-bandwidth product. Recently, structured illumination endoscopy has been utilized for optically sectioned wide-field imaging, but it still needs axial scanning to acquire images from different depths of focal plane. Here, we report wide-field, multiplane, optical sectioning endoscopic imaging, incorporating 3D active speckle-based illumination and multiplexed volume holographic gratings, to simultaneously obtain images of fluorescently labeled tissue structures from different depths, without the need of scanning. We present the design, and implementation, as well as experimental data, demonstrating this endoscopic system's ability to obtain optically sectioned multiplane fluorescent images of tissue samples, with cellular level resolution in wide-field fashion, and no need for mechanical or optical axial scanning.(A) Schematic drawing of the SIHN endoscopy to simultaneously acquire multiplane images from different depths. (B) Uniform, and (C) SIHN illuminated images of standard fluorescence beads (25 μm in diameter) for the two axial planes. (D) Intensity profile on fluorescently labeled signal (ie, in-focus) and background (ie, out-of-focus) of microspheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.