Abstract
Recently, polarimetric synthetic aperture radar (SAR) interferometry has generated much interest for forest applications. Forest heights and ground topography can be extracted based on interferometric coherence using a random volume over ground coherent mixture model. The coherence estimation is of paramount importance for the accuracy of forest height estimation. The coherence (or correlation coefficient) is a statistical average of neighboring pixels of similar scattering characteristics. The commonly used algorithm is the boxcar filter, which has the deficiency of indiscriminate averaging of neighboring pixels. The result is that coherence values are lower than they should be. In this paper, we propose a new algorithm to improve the accuracy in the coherence estimation based on speckle filtering of the 6/spl times/6 polarimetric interferometry matrix. Simulated images are used to verify the effectiveness of this adaptive algorithm. German Aerospace Center (DLR) L-Band E-SAR data are applied to demonstrate the improved accuracy in coherence and in forest height estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.