Abstract
The accuracy and the measurement range of surface profilometry by wavelength scanning interferometry applied to diffusely reflecting surfaces are investigated. The influences of surface roughness and the imaging system in the interferometer are theoretically analyzed by derivation of the autocorrelation function of interferograms arising from wavelength scanning. By using a dye laser with a tuning range of 4.2 nm to a yield resolution of 39.1 mum, we have observed interferograms and their Fourier transforms and autocorrelations to study effects of defocusing and the size ratio of speckle to the CCD pixel for a plane diffuse object positioned normal to the incident beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.