Abstract

An advanced background-oriented schlieren (BOS) method, named as the speckle beam-oriented schlieren technique, was newly developed to measure the distribution of refraction angles in transparent media. A speckle pattern is generated by passing a coherent laser beam through a holographic diffuser, a pinhole, and a lens, generating a collimated background image that is projected directly onto the image sensors. Since the intensity of the background image is maintained at a high level, this method is, in principle, useful for diagnosing fast and/or low signal-to-noise phenomena, such as high-temperature gasses with radiation emission. Moreover, by splitting the background beam into two imaging paths with different focal lengths, the refraction angles can be measured for a schlieren object with uncertain location, and the depth position of the refraction angles can be resolved. This technique was demonstrated by measuring the refraction angle and the depth position distribution in a sonic jet with different injected locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.