Abstract

A frequently used technology in medical diagnosis is optical coherence tomography (OCT). However, coherent noise, also known as speckle noise, has the potential to severely reduce the quality of OCT images, which would be detrimental to the use of OCT images for disease diagnosis. In this paper, a despeckling method is proposed to effectively reduce the speckle noise in OCT images using the generalized low rank approximations of matrices (GLRAM). Specifically, the Manhattan distance (MD)-based block matching method is first used to find nonlocal similar blocks for the reference one. The left and right projection matrices shared by these image blocks are then found using the GLRAM approach, and an adaptive method based on asymptotic matrix reconstruction is proposed to determine how many eigenvectors are present in the left and right projection matrices. Finally, all the reconstructed image blocks are aggregated to create the despeckled OCT image. In addition, an edge-guided adaptive back-projection strategy is used to improve the despeckling performance of the proposed method. Experiments with synthetic and real OCT images show that the presented method performs well in both objective measurements and visual evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call