Abstract

Clinical laboratory regulations require temperature monitoring of facilities, reagent and specimen storage, as well as temperature-dependent equipment. Real-time specimen temperature detection has not yet been integrated into total laboratory automation (TLA) solutions. An infrared (IR) pyrometer was paired with a complementary metal oxide semiconductor (CMOS) laser sensor and connected to an embedded networked personal computer (PC) to create a modular temperature detection unit for closed, moving clinical laboratory specimens. Accuracy of the detector was assessed by comparing temperature measurements to those obtained from thermocouples connected to battery-operated data loggers. The temperature detector was then installed on a pre-analytic laboratory automation system to assess specimen temperature before and after processing on an integrated thawing and mixing (T/M) robotic workcell. The IR temperature detector was able to accurately record temperature of closed, moving specimens on a pre-analytic automation system. The effectiveness of the T/M workcell was independently verified using the temperature detector. Specimen reroute on the pre-analytic automation track was identified as a potential risk for frozen specimens being inadvertently delivered to future, connected instrumentation. Automated IR temperature detection can be used to verify specimen temperature prior to instrument loading and/or sampling. Such systems could be used to prevent frozen specimens from being inadvertently loaded onto analytical instrumentation in TLA solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call