Abstract

We report on the investigation of thermal transport in noncured silicone composites with graphene fillers of different lateral dimensions. Graphene fillers are comprised of few-layer graphene flakes with lateral sizes in the range from 400 to 1200 nm and the number of atomic planes from 1 to ∼100. The distribution of the lateral dimensions and thicknesses of graphene fillers has been determined via atomic force microscopy statistics. It was found that in the examined range of the lateral dimensions, the thermal conductivity of the composites increases with increasing size of the graphene fillers. The observed difference in thermal properties can be related to the average gray phonon mean free path in graphene, which has been estimated to be around ∼800 nm at room temperature. The thermal contact resistance of composites with graphene fillers of 1200 nm lateral dimensions was also smaller than that of composites with graphene fillers of 400 nm lateral dimensions. The effects of the filler loading fraction and the filler size on the thermal conductivity of the composites were rationalized within the Kanari model. The obtained results are important for the optimization of graphene fillers for applications in thermal interface materials for heat removal from high-power-density electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.