Abstract

The structure of unvulcanized and dynamically vulcanized blends of isotactic PP with ethylene-propylene-diene terpolymer (EPDM) having an EPDM content of 5–85 wt % was studied by means of atomic force microscopy. The systems based on the virgin elastomer and the elastomer plasticized with 50% oligomer were examined. During thermal treatment (molding), the structure of the unvulcanized materials undergoes substantial changes. The morphology of dynamically vulcanized blends containing up to 75 wt % rubber is characterized by a homogeneous distribution of crosslinked rubber particles with a particle size of less than 2 μm in the continuous thermoplastic matrix. During PP blending with the plasticized elastomer, the oligomer diffuses into the thermoplastic phase, with the oligomer being distributed evenly between the blend components. As a result, the stress-strain characteristics of the plasticized systems decline relative to those of the oligomer-free materials. A comparative analysis of the dependence of the elastic modulus on the composition of the blends with the theoretical values obtained in terms of the Kerner, Uemura-Takayanagi, Davies, and Coran-Patel models was performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call