Abstract

Zinc oxide nanostructures are prepared hydrothermally in the presence of ethylenediamine (EDA). The morphology and photoluminescent properties of final products are studied as functions of synthesis temperature, synthesis time, and EDA concentration. A decrease in EDA concentration to 30% favors the formation of more perfect and more ordered structures. Blank experiments show that hydrothermal synthesis without organic reagents does not produce nanostructures. When samples are sheltered from convective flows in the cell, the rod growth direction is dictated by the grain orientation in the foil. When nanorods are formed under low supersaturations (in the absence of convective flows), oxygen nonstoichiometry arises in the nanorods and appears in photoluminescence spectra as increased peak intensities in the green spectral range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.