Abstract

It is shown that the decompression schedules after saturation diving to the depth of 30 m designed to hold the nitrogen supersaturation for the most “slow” tissues at the acceptable levels is significantly shorter than the decompression schedules with zero supersaturation of these tissues with nitrogen and all dissolved gases. Equality of the risk for decompression sickness (DCS) onset during this decompression schedule to the risk of DCS onset under non-stop ascent to the surface after saturation diving to the depth of 6.1 m indicates that the effect of the high ambient pressure decreases the density of gas bubble seeds in tissues and the growth rate of their total volume. The DCS symptoms in the experienced divers under dangerous decompression profiles not appear due to the lower density of gas bubble seeds in their tissues relatively to the average level inherent to the many of humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call