Abstract

The paper refers to the mechanisms of emission of noble metals taking into account the specifics associated with the two-temperature state of matter. The emission is caused by the action of an ultrashort infrared laser pulse. It is shown that the two-temperature state results in two effects contributing to the radiated emission of hot electrons. The first effect is interband radiative recombination of electrons induced by thermal smearing of the Fermi distribution of conduction-band electrons. The second effect is radiation of hot conduction-band electrons in case of inelastic electron–phonon interaction. This effect is due to the fact that thermal smearing of the Fermi distribution of conduction-band electrons, taking into account the electron–phonon interaction, and in the presence of strong near fields, enables intraband radiative transitions for electrons in the sp-band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.