Abstract

It has been suggested that repeat sequence antigens of Plasmodium falciparum may serve the parasite in immune evasion by modifying the host antibody response and impairing the development of protective immunity. According to this proposal networks of cross-reactive, repeat sequence malarial antigens have the ability to stimulate a high proportion of all somatically mutated B cells with altered antibody specificity, and thus to hinder the normal process of antibody affinity maturation. To determine the rate at which immunoglobulin mutations produce new reactivities with repeat sequence antigens, hybridoma cell lines specific for the ring-infected erythrocyte surface antigen (RESA) were examined for the incidence of specificity variants that arose naturally or as a result of treatment with the chemical mutagen ethylmethane sulphonate (EMS). From one of the cell lines variants were readily isolated having reactivity towards a very closely related repeat sequence epitope within the same RESA antigen. However, the other hybridoma/antigen combinations revealed no variants. In general, mutations giving rise to antibodies with altered specificity for related repetitive antigens were not readily induced and only limited support of the hypothesis was obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call