Abstract

BackgroundChondrocytes are the main cell damage type involved in the occurrence and development of osteoarthritis (OA). Ferroptosis has been confirmed to be related to many degenerative diseases. This research aimed to explore the role of Sp1 and ACSL4 in ferroptosis in the IL-1β-treated human chondrocyte cells line (HCCs).MethodsThe cell viability was detected with CCK8 assay. The ROS, MDA, GSH, and Fe2+ levels were assessed with corresponding detecting kits. The Col2a1, Acan, Mmp13, Gpx4 and Tfr1 levels were determined by RT-qPCR assay. Western blot was conducted to evaluate the Acsl4 and Sp1 levels. PI staining was carried out to analyze the cell death. The double luciferase report was conducted to verify the interaction between Acsl4 and Sp1.ResultsThe results showed that IL-1β stimulation elevated the LDH release, cell viability, ROS, MDA and Fe2+ levels and declined the GSH levels in the HCCs. Additionally, the mRNA levels of Col2a1, Acan, and Gpx4 were prominently decreased, while Mmp13 and Tfr1 were prominently elevated in the IL-1β stimulated HCCs. Furthermore, Acsl4 protein levels were upregulated in the IL-1β-stimulated HCCs. Both Acsl4 knockdown and ferrostatin-1 treatment neutralized the role of IL-1β in the HCCs. What’s more, Acsl4 was transcriptionally regulated by Specificity protein 1 (Sp1). Sp1 overexpression enhanced the Acsl4 levels and Sp1 knockdown declined it.ConclusionUpregulation of Sp1 activates Ascl4 transcription and thus mediates the occurrence of ferroptosis. Hence, Acsl4 may be a therapeutic target for intervention of OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call