Abstract

Whilst many studies of symbiotic dinoflagellate diversity have focused on tropical reef environments, only a few have explored the degree and pattern of divergence of these endosymbionts at high latitudes. In this study, the genetic diversity and specificity of symbiotic dinoflagellates associated with two common anthozoan hosts in the north-western Pacific Ocean was studied in four different seasons during a period of 1 year. Partial nucleotide sequences of 28S and complete ITS1 ribosomal DNA regions were used to identify, genetically, the endosymbionts extracted from the scleractinian Alveopora japonica and the actinarian Heteractis sp. A. japonica harbours symbionts belonging to Symbiodinium of clade F, while Heteractis sp. associates with Symbiodinium of clade C. Moreover, no seasonal changes in the endosymbiont community were detected in these two associations during this study. This is the first evidence that these two temperate cnidarian-microalgae symbioses are stable. Furthermore, we tested the apparent specificity of the Heteractis sp.- Symbiodinium sp. clade C association, by performing alga-infection experiments with aposymbiotic hosts, and monitoring the uptake and persistence of homologous and heterologous symbionts. The findings confirm the association patterns detected in the field and show that Heteractis sp. only establishes a successful association with Symbiodinium cells of clade C, at least among the heterologous symbionts occurring in the study area. Our results are consistent with the idea that selective pressures in highly fluctuating temperate environments might have granted symbiosis-specificity an adaptive value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.