Abstract

Background, aim, and scope Exploited gas fields and underground gasholders are specific sources of increasing methane concentration. Methane migrates into the soils by diffusion and convection through natural and technogenic cracks in geological structures and influences the function of the soils. Soil cover of gas-bearing area functions as a specific, bilateral, periodically penetrating, geomembrane. Soils shield, transform, and differentiate migrating fluxes of technogenic-allochthonous methane, preventing its emission to the atmosphere. Problems of methane’s emission are rather current at the present, as methane is the second in importance after CO2 greenhouse gas, since its concentration in the atmosphere annually grows by approximately 1%. By global estimations, methane emissions in the gas industry make about 8% of annual receipt to the atmosphere, equal on the average to 500 Тg per a year (Cicerone and Oremland, Global Biogeochem Cy 2:299–327, 1988). But these calculations are based on the account of the technological losses making 3–12% from the mining of natural gas. The contribution of migratory methane fluxes to the atmosphere, as a rule, is not considered. The need for research of soil cover functioning on gas-bearing areas is explained by the fact that processes of methane oxidation, its transformation in soils, and emission to the atmosphere at these objects are now practically not being studied. The aim of our study was to reveal specific processes of soil function and formation on gas-bearing areas by an example of underground gasholder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call