Abstract
RGS proteins regulate the duration of cell signaling by modulating the lifetime of activated G proteins. The specificity of RGS-G protein mutual recognition is critical for meeting unique timing requirements of numerous G protein-mediated pathways. Our study of two splice isoforms of RGS9 expressed in different types of neurons revealed a novel mechanism whereby this specificity is determined by specialized protein domains or subunits acting as affinity adapters. The long RGS9 isoform contains a C-terminal domain that provides high-affinity interaction with its target G protein. The lack of this domain in the short RGS9 isoform is compensated by the action of a G protein effector subunit that is structurally similar to this C-terminal domain. This allows the short isoform to specifically target the complex between the G protein and its effector. Thus, the specific timing needs of different signaling pathways can be accommodated by affinity adapters positioned at various pathway components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.