Abstract

BackgroundThe nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development. Based on a phylogenetic analysis of DNA-binding domains, we define two conserved groups of orthologous NR2E genes: the NR2E1 subclass, which includes C. elegans nhr-67, Drosophila tailless and dissatisfaction, and vertebrate Tlx (NR2E2, NR2E4, NR2E1), and the NR2E3 subclass, which includes C. elegans fax-1 and vertebrate PNR (NR2E5, NR2E3). PNR and Tll nuclear receptors have been shown to bind the hexamer half-site AAGTCA, instead of the hexamer AGGTCA recognized by most other nuclear receptors, suggesting unique DNA-binding properties for NR2E class members.ResultsWe show that NR2E3 subclass member FAX-1, unlike NHR-67 and other NR2E1 subclass members, binds to hexamer half-sites with relaxed specificity: it will bind hexamers with the sequence ANGTCA, although it prefers a purine to a pyrimidine at the second position. We use site-directed mutagenesis to demonstrate that the difference between FAX-1 and NHR-67 binding preference is partially mediated by a conserved subclass-specific asparagine or aspartate residue at position 19 of the DNA-binding domain. This amino acid position is part of the "P box" that plays a critical role in defining binding site specificity and has been shown to make hydrogen-bond contacts to the second position of the hexamer in co-crystal structures for other nuclear receptors. The relaxed specificity allows FAX-1 to bind a much larger repertoire of half-sites than NHR-67. While NR2E1 class proteins bind both monomeric and dimeric sites, the NR2E3 class proteins bind only dimeric sites. The presence of a single strong site adjacent to a very weak site allows dimeric FAX-1 binding, further increasing the number of dimeric binding sites to which FAX-1 may bind in vivo.ConclusionThese findings identify subclass-specific DNA-binding specificities and dimerization properties for the NR2E1 and NR2E3 subclasses. For the NR2E1 protein NHR-67, Asp-19 permits binding to AAGTCA half-sites, while Asn-19 permits binding to AGGTCA half-sites. The apparent conservation of DNA-binding properties between vertebrate and nematode NR2E receptors allows for the possibility of evolutionarily-conserved regulatory patterns.

Highlights

  • The nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development

  • The DNA-binding domain (DBD) consists of two C-4 zinc finger structures at its N-terminal portion and a C-terminal extension (CTE), which is sometimes grouped with the "hinge region" between the DBD and ligand-binding domain (LBD) (Fig. 1)

  • With FAX-1 as the reference sequence, all the NR2E members evaluated were identical at 48 of 85 (56%) amino acid residues, as expected for the strong evolutionary conservation observed for nuclear receptor DBD's

Read more

Summary

Introduction

The nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development. The nuclear receptors are a class of transcriptional regulatory proteins that function in physiology and development in animals [1,2,3]. They are conserved from sponges to mammals [4,5], but this class of proteins has seen significant amplification in the number of genes and elaboration of the amino acid sequences in nematode species [6,7,8]: while humans have 48 predicted nuclear receptor genes and Drosophila melanogaster has 21, Caenorhabditis elegans and C. briggsae each have over 250. Most nuclear receptors have two major conserved functional domains: the DNA-binding domain (DBD) and the ligand-binding domain (LBD). Two key regions in the DBD have been shown to play major roles in NRE binding specificity by making direct and water-mediated hydrogen bond contacts with specific

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.