Abstract

Evaluation of the nano sizes of hydrosols from homogeneous cellulosic and industrial products was made using dynamic light scattering method. The influence of the size of the globule of protein catalysts and the duration of their action on the roving of carded flax fiber was compared. The correlation between the change in the equilibrium absorption of sorption marker (methylene blue) and residual content in the fiber of hemicelluloses was monitored. On the basis of a comparative analysis of the efficiency of biocatalysts in industrial homogeneous and cellulosic preparations it was revealed that globule size influences on the efficiency of sorption properties of flax fibers. The use of homogeneous enzymes with differing sized parameters has allowed isolating the contribution of the target enzymatic modification as in the microfibrillar structure of elementary fibers and for modification the hemicelluloses in the binding substance fixing the elementary fibers in the bast bundles (the linen fibrous complexes). The principles of selection of biocatalysts to increase sorption capacity in flax fiber sorbents were revealed. It was found that the sorption capacity of flax fiber sorbents increases due to the development of mezopore space in elementary fibres and regulable amorphization of interfiber binders in the structure of the linen complex. The research revealed that the the amorphization of flax fiber took place only when the cellulases was used. The size of their globules enables the penetration of these enzymes into mesopores of elementary flax fibres. It was established experimentally that the presence of large isoforms of cellulases or hemicellulases can promote as the development of the internal volume into the fibre binders and also conservation the permissible level of reduction of the hemicelluloses amount in flax fibres is not less than 10 mass.%.Forcitation:Aleeva S.V., Lepilova O.V., Kurzanova P.Yu., Koksharov S.A. Specificity of change in sorption capacity of flax fiber under regulable bio-catalytical destruction of neutral carbohydrates. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 2. P. 80-85

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.