Abstract

We have used DNase I footprinting to examine the formation of antiparallel DNA triple helices on DNA fragments containing the homopurine target sites (GGA)2GGX(GGA)2GG.(CCT)2CCZ(CCT)2CC (where X.Z is each base pair in turn), with the GA- and GT-rich oligonucleotides, (GGA)2GGN(GGA)2GG and (GGT)2GGN(GGT)2GG (N = each base in turn). These were designed to form G.GC and A.AT or T.AT triplets with a central N.XZ mismatch, which should bind in an antiparallel orientation. We find that almost all combinations generate DNase I footprints at low micromolar concentrations. At each target site, the relative binding of the GA- and GT-containing oligonucleotides was not the same, suggesting that these two triplexes adopt different conformations. For a central GC base pair, the most stable complex is observed with a third strand generating a G.GC triplet as expected. A.GC is also stable, especially in the GT oligonucleotides. For a central AT base pair, all four bases form stable complexes though T.AT is favored for the GA-rich thirds strands and A.AT for the GT-rich strands. For a central CG base pair, the stable complexes are seen with third strands generating T.CG triplets, though A.CG and C.CG are stable with GT- and GA-containing oligonucleotides, respectively. C.TA is the best triplet at a central TA base pair. The third strands with central guanines avoided the formation of G.YR triplets on the fragments containing central pyrimidines, producing DNase I footprints which had slipped relative to the target site. These oligonucleotides bound at a different location, generating complexes containing 11 contiguous stable triplets at the 3'-end of the third strand. The results suggest rules for designing the best third strand oligonucleotides for targeting sequences in which homopurine tracts are interrupted by pyrimidines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call