Abstract
The ubiquitously expressed amyloid precursor-like protein 2 (APLP2) has been previously found to regulate cell surface expression of the major histocompatibility complex (MHC) class I molecule K(d) and bind strongly to K(d). In the study reported here, we demonstrated that APLP2 binds, in varied degrees, to several other mouse MHC class I allotypes and that the ability of APLP2 to affect cell surface expression of an MHC class I molecule is not limited to K(d). L(d), like K(d), was found associated with APLP2 in the Golgi, but K(d) was also associated with APLP2 within intracellular vesicular structures. We also investigated the effect of beta(2)m on APLP2/MHC interaction and found that human beta(2)m transfection increased the association of APLP2 with mouse MHC class I molecules, likely by affecting H2 class I heavy chain conformation. APLP2 was demonstrated to bind specifically to the conformation of L(d) having folded outer domains, consistent with our previous results with K(d) and indicating APLP2 interacts with the alpha1alpha2 region on each of these H2 class I molecules. Furthermore, we observed that binding to APLP2 involved the MHC alpha3/transmembrane/cytoplasmic region, suggesting that conserved as well as polymorphic regions of the H2 class I molecule may participate in interaction with APLP2. In summary, we demonstrated that APLP2's binding, co-localization pattern, and functional impact vary among H2 class I molecules and that APLP2/MHC association is influenced by multiple domains of the MHC class I heavy chain and by beta(2)m's effects on the conformation of the heavy chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.