Abstract

With a novel model culture system in which afferents are co-cultured with purified populations of target neurons, we have demonstrated that a target cell within the central nervous system (CNS), the cerebellar granule neuron, poses a "stop-growing signal" for its appropriate afferents, the mossy fibers. To ask whether this stop signal is afferent specific, we co-cultured granule neurons with another cerebellar afferent system, the climbing fibers from the inferior olivary nuclei, which normally contact Purkinje neurons, and with retinal ganglion cell afferents, which never enter the cerebellum. Granule neurons do not pose a stop signal to either of these afferents. In contrast to pontine mossy afferents that grow well on laminin and showed reduced outgrowth on granule neurons, both olivary and retinal fibers displayed similar growth on laminin alone or on granule neurons. In addition, each afferent showed different degrees of fasciculation and growth cone morphology on laminin. Thus, the growth arrest signal sent by granule neurons is specifically recognized by their appropriate afferents. Moreover, these three types of afferents exhibit varying growth patterns on the same noncellular and cellular substrates, implicating distinct molecular characteristics of growth regulation for different classes of neurons that would contribute to specificity of synapse formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.