Abstract

Recently, federated learning has become a powerful technique for medical image classification due to its ability to utilize datasets from multiple clinical clients while satisfying privacy constraints. However, there are still some obstacles in federated learning. Firstly, most existing methods directly average the model parameters collected by medical clients on the server, ignoring the specificities of the local models. Secondly, class imbalance is a common issue in medical datasets. In this paper, to handle these two challenges, we propose a novel specificity-aware federated learning framework that benefits from an Adaptive Aggregation Mechanism (AdapAM) and a Dynamic Feature Fusion Strategy (DFFS). Considering the specificity of each local model, we set the AdapAM on the server. The AdapAM utilizes reinforcement learning to adaptively weight and aggregate the parameters of local models based on their data distribution and performance feedback for obtaining the global model parameters. For the class imbalance in local datasets, we propose the DFFS to dynamically fuse the features of majority classes based on the imbalance ratio in the min-batch and collaborate the rest of features. We conduct extensive experiments on a dermoscopic dataset and a fundus image dataset. Experimental results show that our method can achieve state-of-the-art results in these two real-world medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.