Abstract

These experiments were designed to investigate the role of neuronal protein synthesis in the hormonal activation of female sexual behavior using intracranial implants of the protein synthesis inhibitor, anisomycin. In the first experiment, female rats receiving bilateral cannulae implants in the medial preoptic area (POA), septal region (SEPT), ventromedial hypothalamus (VMH), or midbrain central gray (CG) were injected with 2.5 μg estradiol benzoate (EB), followed 48 hr later by 500 μg progesterone (P). Females receiving anisomycin in the VMH at the time of EB injection had lower levels of lordosis and darting compared to tests without anisomycin. Sexual behavior was unaffected in females receiving anisomycin implants in the POA, SEPT, or CG. In a second experiment, we replicated the finding that anisomycin could attenuate lordotic responsivity when placed in the VMH of female rats injected with 2.5 μg EB and 500 μg P. In addition, we found that POA implants of anisomycin could facilitate lordosis in females given a low dose of EB (1.25 μg) plus 500 μg P. In a third experiment, we assessed the effects of anisomycin application to the VMH or POA of female rats receiving estradiol (E; diluted 1:250 with cholesterol) implants in the VMH and systemic P. Treatment of the VMH with anisomycin prior to E in the VMH suppressed lordotic responding, whereas anisomycin application to the POA prior to E in the VMH had no effect on lordosis. The results of these experiments suggest that reducing protein synthesis in the region of the VMH disrupts the action of estrogen on the VMH, and that the facilitative action of anisomycin in the POA of female rats requires more estrogen treatment than threshold stimulation of the VMH alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call