Abstract

Experimental study of evolution of plumes of atomized metastable superheated water during its discharge through convergent-divergent nozzles is conducted. Dispersion characteristics of dense plumes in micron and submicron droplet diameter ranges are obtained. Theoretical and prediction analyses of different coagulation mechanisms in the considered two-phase flow are performed. The negligible effect of Brown-type coagulation is shown. It is also demonstrated that turbulent coagulation can change the fraction of micron-diameter droplets within 9%. In addition, for the first time, an “inertial” mechanism of coagulation is considered for the studied plumes under the conditions of plume baking in a cocurrent flow or in the ambient air. It can lead to a considerable decrease in the submicron-droplet mass fraction, which is observed in experiments even at a small distance from the nozzle cut. The predicted data are compared with experimental ones obtained at theexperimental setup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.