Abstract

Stability analysis issues and controller synthesis for descriptor systems with parametric uncertainty in the derivative matrix are discussed in this paper. The proposed descriptor system can extend the system’s modeling extent of physical and engineering systems from the traditional state-space model. First, based on the extendedD-stability definitions for the descriptor model, necessary and sufficient admissibility andD-admissibility conditions for the unforced nominal descriptor system are derived and formulated by compact forms with strict linear matrix inequality (LMI) manner. In contrast, existing results need to involve nonstrict LMIs, which cannot be evaluated by current LMI solvers and need some extra treatments. Deducing from the obtained distinct results, the roust admissibility andD-admissibility of the descriptor system with uncertainties in both the derivative matrix and the system’s matrices thus can be coped. Furthermore, by involving a proportional and derivative state feedback (PDSF) control law, we further address the controller design for the resulting closed-loop systems. Since all the proposed criteria are explicitly expressed in terms of the strict LMIs, we can use applicable LMI solvers for evaluating the feasible solutions. Finally, the efficiency and practicability of the proposed approach are demonstrated by two illustrative examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.