Abstract
In this paper, we propose a consistent nonparametric test for linearity in a large dimensional panel data model with interactive fixed effects. Both lagged dependent variables and conditional heteroskedasticity of unknown form are allowed in the model. We estimate the model under the null hypothesis of linearity to obtain the restricted residuals which are then used to construct the test statistic. We show that after being appropriately centered and standardized, the test statistic is asymptotically normally distributed under both the null hypothesis and a sequence of Pitman local alternatives by using the concept of conditional strong mixing that was recently introduced by Prakasa Rao (2009). To improve the finite sample performance, we propose a bootstrap procedure to obtain the bootstrap p-value. A small set of Monte Carlo simulations illustrates that our test performs well in finite samples. An application to an economic growth panel dataset indicates significant nonlinear relationships between economic growth, initial income level and capital accumulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.