Abstract

This article addresses the problem of verifying discrete-time stochastic systems against omega-regular specifications using finite-state abstractions. Omega-regular properties allow specifying complex behavior and encompass, for example, linear temporal logic. We focus on a class of systems with mixed monotone dynamics. This class is shown to be amenable to efficient reachable set computation and models a wide range of physically relevant systems. In general, finite-state abstractions of continuous state stochastic systems give rise to augmented Markov chains wherein the probabilities of transition between states are restricted to an interval. We present a procedure to compute a finite-state interval-valued Markov chain (IMC) abstraction of discrete-time, mixed monotone stochastic systems subject to affine disturbances given a rectangular partition of the state space. Then, we suggest an algorithm for performing verification against omega-regular properties in IMCs. Specifically, we aim to compute bounds on the probability of satisfying a specification from any initial state in the IMC. This is achieved by solving a reachability problem on the sets of so-called winning and losing components in the Cartesian product between the IMC and a Rabin automaton representing the specification. Next, the verification of IMCs may yield a set of states whose acceptance status is undecided with respect to the specification, requiring a refinement of the abstraction. We describe a specification-guided approach that compares the best and worst case behaviors of accepting paths in the IMC and targets the appropriate states accordingly. Finally, we show a case study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.