Abstract

The increasing complexity of electric power systems leads to challenges in integration and verification. We consider the problem of designing a control protocol for an aircraft electric power system that meets a set of requirements describing the correct behaviors of the system and reacts dynamically to changes in internal system states. We formalize the requirements by translating them into a temporal logic specification language and apply game-based, temporal logic formal methods to automatically synthesize a controller protocol that satisfies these overall properties and requirements. Through a case study, we perform a design exploration to show the benefits and tradeoffs between centralized and distributed control architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call