Abstract

The recent development of the Lithosphere–Atmosphere–Ionosphere (LAI) coupling model and experimental data of remote sensing satellites on thermal anomalies before major strong earthquakes have demonstrated that radon emanations in the area of earthquake preparation can produce variations of the air temperature and relative humidity. Specific repeating pattern of humidity and air temperature variations was revealed as a result of analysis of the meteorological data for several tens of strong earthquakes all over the world. The main physical process responsible for the observed variations is the latent heat release due to water vapor condensation on ions produced as a result of air ionization by energetic α-particles emitted by 222Rn. The high effectiveness of this process was proved by the laboratory and field experiments; hence the specific variations of air humidity and temperature can be used as indicator of radon variations before earthquakes. We analyzed the historical meteorological data all over the Mexico around the time of one of the most destructive earthquakes (Michoacan earthquake M8.1) that affected the Mexico City on September 19, 1985. Several distinct zones of specific variations of the air temperature and relative humidity were revealed that may indicate the different character of radon variations in different parts of Mexico before the Michoacan earthquake. The most interesting result on the specific variations of atmosphere parameters was obtained at Baja California region close to the border of Cocos and Rivera tectonic plates. This result demonstrates the possibility of the increased radon variations not only in the vicinity of the earthquake source but also at the border of interacting tectonic plates. Recent results on Thermal InfraRed (TIR) anomalies registered by Meteosat 5 before the Gujarat earthquake M7.9 on 26 of January 2001 supports the idea on the possibility of thermal effects at the border of interacting tectonic plates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.