Abstract
Various porous titania photocatalysts are analyzed three-dimensionally in real space by electron tomography. Shapes and three-dimensional (3D) distributions of fine pores and silver (Ag) particles (2 nm in diameter) within the pores are successfully reconstructed from the 3D data. Electron tomography is applied for measuring the specific surface area of the porous structures including open and closed porosity. Calculated specific surface areas of 22.8 m(2)/g for a conventional sol-gel TiO(2) sample and 366 m(2)/g for a highly porous TiO(2) sample prepared using the Pluronic P-123 self-assembly process are compared with those measured by the general BET method. The real-space surface measurement indicates that the highly porous TiO(2) produced by the present method using block copolymers has a greater number of effective reaction sites for the degradation of methylene blue. Electron tomography shows a great potential to contribute considerably to the nanostructural analysis and design of such catalyst materials for photocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.