Abstract

Stimulation of quiescent AKR-2B mouse embryo cells with epidermal growth factor (EGF) results in a rapid and specific induction of actin mRNA sequences. These mRNAs include those coding for both beta- and gamma-cytoskeletal, but not alpha-skeletal muscle, actin isotypes. Elongation of nascent RNA chains in isolated nuclei (run-off transcription) demonstrates that the mRNA accumulation is preceded by an increase in actin gene transcription. This increase is transient, however, and is followed by a rapid attenuation of transcriptional activity. An inhibitor of protein synthesis, cycloheximide, was also found to induce beta- and gamma-actin mRNA accumulation. Furthermore, the simultaneous addition of EGF and cycloheximide produced a synergistic effect on actin sequences in both steady-state nuclear and polysomal RNA. Run-off transcription experiments demonstrate that this synergistic effect results from an increase in the magnitude and duration of actin gene transcription. It is also specific in that alpha-tubulin gene transcription is not similarly affected. These data suggest the existence of a specific labile repressor of actin gene transcription.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call