Abstract

Most studies of protein oxidation have typically focused on the reactivity of single amino acid side chains while ignoring the potential importance of adjacent sequences in directing the reaction pathway. We previously showed that hypochlorous acid (HOCl), a specific product of myeloperoxidase, inactivates matrilysin by modifying adjacent tryptophan and glycine (WG) residues in the catalytic domain. Here, we use model peptides that mimic the region of matrilysin involved in this reaction, VVWGTA, VVWATA, and the library VVWXTA, to determine whether specific sequence motifs are targeted for chlorination or oxygenation by myeloperoxidase. Our results demonstrate that HOCl generated by myeloperoxidase or activated neutrophils converts the peptide VVWGTA to a chlorinated product, WG+32(Cl). Tandem mass spectrometry in concert with high resolution 1H and two-dimensional NMR analysis revealed that the modification required cross-linking of the tryptophan to the amide of glycine followed by chlorination of the indole ring of tryptophan. In contrast, when glycine in the peptide was replaced with alanine, the major products were mono- and dioxygenated tryptophan residues. When the peptide library VVWXTA (where X represents all 20 common amino acids) was exposed to HOCl, only WG produced a high yield of the chloroindolenine derivative. However, when glycine was replaced by other amino acids, oxygenated tryptophan derivatives were the major products. Our observations indicate that WG may represent a specific sequence motif in proteins that is targeted for chlorination by myeloperoxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.