Abstract
Type 1 fimbriae are assembled by the chaperone-usher pathway where periplasmic protein complexes formed between fimbrial subunits and the FimC chaperone are recruited by the outer membrane protein FimD (the usher) for their ordered polymerization and export. FimH adhesin initiates and stimulates type 1 fimbriae polymerization by interacting with FimD. Previously we showed that the N-terminal lectin domain of FimH (N-FimH) is necessary for binding of the adhesin to FimD. In this work, we have selected mutants in N-FimH that reduce the levels of adhesin and type 1 fimbriae displayed in Escherichia coli without altering the levels of FimH in the periplasm. The selected mutations are mostly concentrated in residues G15, N46 and D47. In contrast to other mutations isolated that simply affect binding of FimH to FimD (e.g. C3Y), these variants associate to FimD and alter its susceptibility to trypsin digestion similarly to wild-type FimH. Importantly, their mutant phenotype is rescued when FimD is activated in vivo by the coexpression of wild-type FimH. Altogether, these data indicate that residues G15, N46 and D47 play an important role following initial binding of FimH to FimD for efficient type 1 fimbriae polymerization by this outer membrane usher.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.